
Bilateral Communication Between the Unity® Game
Engine and Max

Michael Rhoades
David Rodriguez
John Fillwalk

Abstract

In their ongoing research and creative practice, researchers and developers in the Institute
for Digital Intermedia Art (IDIA Lab), at Ball State University in Muncie, Indiana,
consistently investigate and instantiate multifarious approaches to extended reality (XR).
In this paper the authors disseminate their initial investigation into the methodological
pipelines required for the perceptual coupling of audio and visual objects in XR. Toward
the ultimate goal of enhanced perceptual localization and qualities of immersion, the
Unity game engine and Cycling 74’s Max were integrated for this project.

Through the use of a three-dimensional Cartesian coordinate system, the authors
demonstrate a methodology in which the location of a virtual object is communicated
from the Unity game engine, via the Open Sound Control (OSC) protocol, to Max, which
then projects a sound sample into the listening space. Using a 3D/360°, 8.1 loudspeaker
system configured in a cuboidal pattern, high-order Ambisonics and convolution reverb
are implemented to facilitate the perception of the location of the sound object.

Introduction

The Institute for Digital Intermedia Arts (IDIA Lab) is based at Ball State University in
Muncie, Indiana. This think tank, incubator, and workshop is composed of expert artists,
animators, modelers, programmers, composers, and researchers working in numerous
forms of extended reality (XR). As such they commonly extend the boundaries of
contemporary interdisciplinary artistic methodologies and ontologies in the areas of
augmented, mixed, and virtual reality.

One of numerous highlights in the IDIA lab is the Cave Automatic Virtual Environment
(CAVE) (Cruz-Neira et al.). The CAVE consists of an 8.1, three-dimensional, Genelec
sound system, designed and installed by Michael Rhoades, and a 4k, 270º, quasi-
spherical video projection system. This deeply immersive environment became fully
functional in the fall of 2019 and has since inspired numerous projects including the
subject matter of the research described herein.

In the winter of 2020, seeing the potential for greater auditory immersion in the CAVE
environment, the IDIA Lab director, John Fillwalk, proposed creating a demo that

perceptually coupled the movements of visual objects with those of auditory objects
employing audio/visual facilities afforded by the CAVE. To facilitate an initial
exploration of this idea, a virtual object was envisioned that would provide audio/visual
cues as to its location within this virtual space. It was further considered that a standard
handheld game controller joystick would control the location of the object. With this
basic premise, a team set to work.

The Unity game engine (Unity) was chosen to develop the visual side of this project.
Though originally created to democratize game development, today it is used across a
wide spectrum of industries to author realtime and rendered 3D applications. From video
games, animated movies, and extended reality applications to machine learning, vehicle
customization configurators, and immersive occupational training, Unity is an easy
choice for high-quality, yet approachable 3D development.

Cycling 74’s Max was the platform of choice for the auditory aspect of the project. Max
began as a musical programming and compositional environment. Since its inception, it
has developed into a powerful interactive multimedia toolset toward that purpose.
Further, today it reaches into areas such as auditory spatialization, computer graphics,
communication, video creation and incorporation, and numerous other areas of artistic
expression.

Though Unity and Max are extremely flexible in areas beyond their originally intended
purposes, it is asserted here that a tandem approach, one that capitalizes upon the
strengths of each, empowers a union that provides the best of both worlds. Employing
Unity for its visual capabilities and Max for its audio capabilities engenders a workflow
that is at once broad and deep in the creation of intermedial content.

Both the Unity and Max environments provide for the functional implementation of Open
Sound Control (OSC), which enables a bilateral communicative pipeline. Using OSC
messages to exchange information, in real time with minimal latency, unifies them
toward a common purpose that greatly extends the capabilities of each. Passing control
data in the form of three-dimensional Cartesian coordinates between them, a visual object
in Unity can directly control the perceived location of an audio object in Max. This
functionality opens doors to many unique aesthetic and creative opportunities and it also
presents novel challenges. Thus the delineation of an initial implementation of this
approach is the subject of this paper.

* This paper assumes a basic working knowledge of Unity and Max on the part of the reader.

Establishing the Communication Pipeline

OSC in Unity

Using a Unity C# library called extOSC (Sigalkin), advanced OSC messaging between
Unity and Max was implemented for this project. Though several OSC libraries exist for
the Unity game engine, extOSC is one of the most modern and robust implementations of
the OSC protocol todate, covering much of the 1.1 specification (Freed and Schmeder)
including address masks and full data type support. Additional notable features of the
Unity package include automatic bundle packing, value mapping, and tight integration
with the Unity editor, including built-in transmitter and receiver components and
dedicated debug and console windows. As shown in Fig. 1 below, extOSC’s dedicated
debug window allows developers to create and save OSC messages and test them with
configured transmitters and receivers. The dedicated console window, pictured in Fig. 2,
provides a separation between OSC messages and general Unity console messages, which
simplifies the debugging process.

Figure 1 - Dedicated Debug Window in extOSC

Figure 2 - Dedicated Console in extOSC

OSC in Max

Implementing basic OSC communication in Max is relatively straightforward. Since OSC
is a UDP networking protocol, instantiating the “udpreceive” object provides the
functionality required. For this project, Max and Unity are running on the same machine.
Therefore, the udpreceive object, in the “p receive_coordinates” subpatch located in the
main patch window, will receive a UDP message via the localhost. The only argument
required is the port number that Unity will send its OSC messages to. As can be seen in
Fig. 3 below, object_01 is listening on port 7401. Any UDP message sent to that port on
the localhost will be accepted by this object and passed along to any objects connected to
its output. In this case the next step in the data flow is the “fromSymbol” object, which
parses the OSC message from a string to three floating point numbers… one for each of
the three Cartesian coordinates, X, Y, and Z. Next the message is sent to the “unpack”
object where it is split into three separate outputs, again the three Cartesian coordinates.
Lastly, each of the coordinates are sent separately from the p_receive_coordinates
subpatch to the “p_set_coordinates” subpatch. There the values sent from Unity are
scaled to a range between 0 and 1 and sent out to the ICST Ambisonics plugin object,
where they will stipulate, in real time, the position of the auditory object. This will be
discussed in detail in a subsequent section.

Also in the p_set_coordinates subpatch, the values of each of the scaled coordinates are
averaged and then sent to the “p_convolution_reverb” subpatch where they will be used
to designate the relative proximity of a given sound object to the center of the virtual
space. This will also be discussed in detail subsequently in this document.

Figure 3 - OSC Listening Ports

Implementation

The Unity Project

Communicating the position of a three-dimensional object in a Unity scene is
accomplished by using the extOSC library and the provided OSCTransmitter,
OSCMessage, and OSCValue types. First, as seen in Fig. 4, an integer is declared to
uniquely identify the object. Though a unique identifier is not strictly required when
sending the coordinates of a single object, it is necessary if the application consists of
multiple objects. In subsequent iterations of this project, the Max patch was expanded to
integrate this feature.

				[SerializeField]	private	int	id;

Figure 4 - Declaring a unique object identifier

Next, an OSCTransmitter component is referenced. Though it is possible to instantiate
and configure a transmitter through code, it is more straightforward to attach an
OSCTransmitter component to a game object and configure it in the inspector at edit
time. This is shown in Fig. 5. Note that the built-in transmitter component in extOSC
allows for a remote server configuration that is separate from the simulation logic. An
example of this is demonstrated in Fig. 6 below.

				[SerializeField]	private	OSCTransmitter	_transmitter;	

Figure 5 - Reference to an OSCTransmitter Component

Figure 6 - Built-in Transmitter Component in extOSC

Finally, an OSCMessage is constructed with the address /{id}/position, stipulating that
the data is the position of the {id} object. Because Unity’s transform position is
represented as a Vector3 struct and Vector3 is not a part of the OSC specification, the
position is instead stored as three float components; the x, y, and z values. As
demonstrated in Fig. 7, an OSCMessage is declared and initialized containing the object
position as floating point numerical components. Note the string interpolation of the id in
the message address, which ensures the position of each object is routed to the pertinent
identifier.

				private	OSCMessage	positionMessage;	

	

				private	void	Start()	

				{	

								positionMessage	=	new	OSCMessage($"/{id}/position");	

								positionMessage.AddRange(new	List<OSCValue>()	{	

												new	OSCValue(OSCValueType.Float,	transform.position.x),	

												new	OSCValue(OSCValueType.Float,	transform.position.y),	

												new	OSCValue(OSCValueType.Float,	transform.position.z)	

								});	

				}	

Figure 7 - Declaration and Initialization of OSCMessage

The initialization of the OSCMessage variable is performed within the Start method. The
current position of the object is updated in every frame and a message consisting of its
coordinate values is broadcast via the OSCTransmitter. See Fig. 8 below.

				private	void	Update()	

				{	

								positionMessage.Values[0].FloatValue	=	transform.position.x;	

								positionMessage.Values[1].FloatValue	=	transform.position.y;	

								positionMessage.Values[2].FloatValue	=	transform.position.z;	

								_transmitter.Send(positionMessage);	

				}	

	

Figure 8 - Updating and sending the OSCMessage

The Max Patch

Background:

In order to produce a real-world analogy to the perceived location of the virtual visual
object in the Unity environment, two audio paradigms are primarily employed in Max;
High-order Ambisonics (HOA) and Convolution Reverb (CR). Through wavefield
interference patterns, HOA utilizes a weighted sum of each loudspeaker in a venue to
contribute toward the creation of sound fields that can be positioned in specified
locations. The CAVE’s 8.1 sound system, using 8 - Genelec 8030s and a 7050 sub, is
configured in a 3D cuboidal arrangement. This means there are four loudspeakers in a
square plane above the 270º projection screen and four below it as depicted in Fig. 9
below.

Figure 9 - 8.1 Loudspeaker Configuration in the CAVE

The sound field can, theoretically, be projected to any position within the venue. As
demonstrated in Fig. 10 a cuboidal three-dimensional Cartesian coordinate system is
implemented to specify the location of the sound object. Notice that the loudspeaker
locations in the CAVE are directly correlated to the Cartesian coordinates.

Figure 10 - Loudspeaker Cartesian Coordinate System (Rhoades)

Though HOA is quite effective in stipulating the perception of height, width, and depth of
a sound object within the virtual space, it is not thoroughly convincing regarding distance
cues (Rhoades). To enhance the perception of distance, reverberation was integrated into
the process.

“Convolution is a mathematical procedure whereby one function is modified by another”
(Heintz). Convolution reverb is an ideal solution for producing distance cues in audio
objects. It consists of mapping the mathematical representation of a reverberation
signature, derived from an impulse response (IR) recording, onto another sound or sound
event (Rhoades). Generally for this project, a mix between a 100% reverberant (wet) and
100% non-reverberated (dry) sound sample is determined by the proximity of the virtual
visual object to the center of the virtual space. For instance, if the visual object is close to
the center of the space, there is very little reverberation in the sample playback.
Conversely, the opposite is true when the visual object is far from the center… it
becomes nearly 100% reverberant. This reverberation characteristic is generally
consistent with our everyday real-word perception of distance. When coupled with the
previously mentioned approach to HOA, the location of a given sound event can be
effectively and consistently perceived.

Implementation:

Figure 11 displays the main window of the Max patch utilized for this project. The basic
audio flow begins with the sfplay object in the p_sfplay sub patch. There a monophonic
sound sample is played in a constant loop when the “start” button is activated. The output
from the subpatch is routed to the CR subpatch, p convolution_reverb shown in Fig. 12.

Figure 11 – Main Max Patch Layout

Figure 12 – Subpatch Implementing Convolution Reverberation

The hirt.convolutionreverb plugin was created as a part of the Huddersfield Immersive
Sound System, which finds its origin at Huddersfield University (Harker, Tremblay). It is
an excellent convolution reverb choice for Max offering several key features required for
this project. Of particular interest are the implementation of the wet/dry mix and the
amplitude parameters. The intention in the former was to determine the reverberation
effect, applied to the sound sample, depending upon the virtual visual object’s distance
from the center of the virtual space. As previously mentioned, the farther from the center
of the virtual space the visual object is located, the more reverberation is applied to the
sample and the closer it is to the center the less reverberation is applied. This is
accomplished by appropriately mixing the dry sample with the wet sample.

The amplitude parameter of the CR plugin controls the loudness of the sound sample
depending upon the virtual visual object’s distance from the center of the virtual space.
The sound sample is played at full amplitude near the center and it becomes inaudible at
the extremities. Together, these effects create convincing localization distance cues since
it generally replicates two dynamic aspects of real world audio perceptions.

Next, the audio sample is sent to the second-order Ambisonics encoder and decoder
where it is output to a weighted sum of the 8 loudspeakers in the CAVE according to the
location of the sound field as stipulated by the three-dimensional Cartesian coordinates
sent from Unity to Max via OSC. Fig. 13 shows the ICST plugin, which was created by
the Zurich University of the Arts (ZHdK). The right half of the image shows the manner
in which the loudspeaker locations within the venue are determined for the plugin. These
are directly correlated to the speaker locations shown in Fig. 10 above. The left half of
the image shows the location of the current coordinates of the sound field being
projected. The spherical top half of both images offers a top view of the listening space
and the hemispherical bottom half shows a frontal view.

Figure 13 – ISCT Ambisonic Object Plugin

When the ICST plugin has determined the audio signals to be sent to each of the 8
loudspeakers in the venue, the signal has been altered from a monophonic sample to an 8-
channel sound source. These eight samples, which are usually in a constant state of flux
according to the varying location of the virtual visual object, are then sent to the p
levelgains sub patch where the amplitude of the upper level of loudspeakers are mixed
with that of the lower level loudspeakers. This enables a precise balance of equal
perception between them. This is necessary due to the fact that the height dimension of a
three-dimensional sound system is the most difficult to perceive (Hollerweger).
Stipulating a precise balance between the two levels of loudspeakers is an important step
in projecting the localization of the audio object, and the subsequent coupling of audio
and visual objects, in a perceptible manner.

The last step in the audio flow of the Max patch is the digital audio converter object,
which sends the audio signal to the audio interface hardware. In the CAVE this means a
Focusrite® Scarlett 18i20.

Conclusions

Though not tested empirically, the confluence of these audio/visual processes, uniting
Unity and Max, forms a cohesive and powerful determinant toward the perceptual
localization of the virtual visual object. While experiencing it in the CAVE one certainly
gains a sense of the audio/visual object existing and moving within the three-dimensional
virtual space. There appears to remain a vast area of research and implementation to be
explored in such an approach, which has powerful implications in several areas of XR.

Though its implementation is highly dependent upon having access to facilities and
venues that are conducive to such an interaction, it can nonetheless be generalized to
other situations. However, it is easy to imagine a future in which highly immersive
venues become increasingly available, thus providing for the implementation of these and
other similar techniques.

This project has served as a dynamic proof of concept with regard to the perceptual
coupling of audio/visual of objects through the use of Unity and Max as integrated and
implemented through OSC communication protocols.

One potential area of future enhancement to this project is grounded within the fact that
there is a disparity between the three-dimensionality of the sound system as compared to
the two-dimensionality of the projection system. For instance, with the current
configuration, as a visual object approaches a close proximity to the viewer it simply
becomes larger on the projection screen, which is a visual proximity cue yet one that
cannot exist in isolation. Object size is an aspect of visually perceived proximity,
however it needs to be accompanied by the perception of an object consuming the space
between itself and the viewer to be truly convincing. Conversely, moving a sound field
within close proximity to the listener in this three-dimensional venue, closely mimics its
corollary in a real space/time. Implementing a stereoscopic visual projection system,
which ascribes perceptible three-dimensionality to the visual experience, would alleviate
this disparity. This concern can also be addressed by implementing the approach for
projection within a head-mounted display, which is often a more financially viable
option. Three-dimensional stereoscopic visual projection coupled with the three-
dimensional sound system greatly enhances such an immersive experience.

Future Development

This relatively simple project provides far-reaching implications in the future work of the
IDIA Lab being a proof-of-concept for more extensive projects. In its present state, up to
8 visual objects can be correlated to 8 auditory objects and this number can easily be
expanded. Thus the basic ideas explored in this research can be generalized to more

expressive and active environments such as those in gaming, interactive installations,
telematic expressions, telecommunication, visual music, and numerous others. Further,
this initial foray into such a paradigm enables one to imagine a future in which
holographic and holophonic, 3D audio/visual, implementations could assume much more
fully immersive trajectories than those currently in place.

At present, the communication between Unity and Max in this project is unidirectional.
The simulation in the Unity game engine transmits object positions to Max via OSC.
However, future development could also explore communication in the opposite direction
wherein Max could send data to Unity. Imagine a parameter of an auditory object, for
instance the amplitude, in Max stipulating the location of a visual object in Unity. Such
relationships could provide for very interesting immersive experiences.

This could be accomplished with the extOSC library’s OSCReceiver and OSCBind and a
reference to an OSCReceiver component, see Fig. 14. As with the transmitter, this
component can be configured in the editor and dragged onto the reference. Then an
address can bind to a method callback that takes an OSCMessage as a parameter. When
the receiver receives a message that matches the binding, the callback is instantiated with
the message. Similar to the OSCTransmitter in Fig. 6 above, the built-in receiver
component in extOSC allows for a remote server configuration separate from the
simulation logic. This is shown in Fig. 14 below. Note that a reference to an
OSCReceiver component, Fig. 15, is established and an address is bound to a callback.
Also, note the “*” wildcard in the message address. This stipulates that any id will trigger
this callback.

Figure 14 - Built-in Receiver in extOSC

				[SerializeField]	private	OSCReceiver	_receiver;	
		
				private	void	OnEnable()	
				{	
								_receiver.Bind("/*/position",	OnPositionChanged);	
				}	
		

				private	void	OnPositionChanged(OSCMessage	position)	
				{	
								//	Do	something	with	position	values	
				}

Figure 15 - Reference to an OSCReceiver component

References
Cruz-Neira, Carolina, et al. “The CAVE: audio visual experience automatic virtual

environment.” ACM Digital Library, 1 June 1992,
https://dl.acm.org/doi/10.1145/129888.129892. Accessed 27 July 2021.

Freed, Adrian, and Andy Schmeder. “Features and Future of Open Sound Control version 1.1 for

NIME.” Features and Future of Open Sound Control version 1.1 for NIME, 2009,
http://cnmat.org/files/attachments/Nime09OSCfinal.pdf. Accessed 14 July 2021.

Harker, Alex, and Pierre Alexandre Tremblay. “The Hisstools.” University of Huddersfield,

https://research.hud.ac.uk/institutes-centres/cerenem/projects/thehisstools/. Accessed 27 July
2021.

Hollerweger, Florian. “An Introduction to Higher-Order Ambisonic.” April 2005,

http://decoy.iki.fi/dsound/ambisonic/motherlode/source/HOA_intro.pdf. Accessed 27 July
2021.

Rhoades, Michael. “Composing Holochoric Visual Music: Interdisciplinary Matrices.”

VTechWorks Home, Virginia Tech, 1 February 2021,
vtechworks.lib.vt.edu/handle/10919/102159. Accessed 27 July 2021.

Sigalkin, Vladimir. “GitHub - Iam1337/extOSC: extOSC is a tool dedicated to simplify creation

of applications in Unity with OSC protocol usage.” GitHub, 20 May 2021,
https://github.com/Iam1337/extOSC. Accessed 14 July 2021.

ZHdK - Zürcher Hochschule der Künste. “Downloads: Ambisonics Externals for Maxmsp.”

ZHdK, www.zhdk.ch/forschung/icst/software-downloads-5379/downloads-ambisonics-
externals-for-maxmsp-5381. Accessed 27 July 2021.

Disclaimers

Bilateral Communication Between the Unity® Game Engine and Max is not sponsored by
or affiliated with Unity Technologies or its affiliates. “Unity” is a trademark or registered
trademark of Unity Technologies or its affiliates in the U.S. and elsewhere.

